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1 Introduction

Matrix multiplication is a core operation in large-scale data analysis and machine learning work-
loads. When matrix sizes exceed device memory capacity, overall performance is often dominated
not by compute throughput but by host—device data movement and memory management.

This project focuses on engineering efficient end-to-end matrix multiplication pipelines on
NVIDIA GPU systems using cuBLAS and cuBLASLt as the compute backend. Rather than imple-
menting custom GPU kernels, the work explores system-level optimizations including pinned host
memory allocation, NUMA-aware memory placement, multi-threaded data staging, asynchronous
transfers, double buffering, and multi-GPU execution. The goal is to evaluate how these tech-
niques affect throughput and scalability for very large matrices under different numerical precision
settings.

2 System Design and Implementation

2.1 System Architecture Overview
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Figure 1: High-level system architecture showing NUMA-aware host memory and multi-GPU exe-
cution.

2.2 Memory management
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Figure 2: NUMA topology with per-node CPU cores, local RAM, and attached GPUs. Bidirectional
link indicates cross-NUMA memory access/interconnect.

On NUMA systems, memory access latency and bandwidth depend on the physical location of
memory relative to CPU cores and attached GPUs. Each NUMA node contains a disjoint set of
CPU cores and node-local system memory, as shown in Figure 2.

To reduce cross-NUMA traffic and improve host-to-device transfer efficiency, large input matri-
ces are allocated in pinned host memory on the NUMA node closest to the target GPU. Memory
allocation and initialization are performed by CPU threads bound to the corresponding NUMA
node to ensure correct page placement.

2.3 Double buffering
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Figure 3: Double-buffered execution showing overlapped host-to-device transfers and compute.

Figure 3 illustrates the double-buffered execution scheme used to overlap host-to-device (H2D)
transfers with GPU computation. Input data is streamed in chunks using two CUDA streams and
two device buffers (ping—pong). While cuBLAS/cuBLASLt computes on chunk 7 in one buffer, the
next chunk ¢41 is transferred asynchronously into the other buffer. Overlap begins from the second
iteration because the first chunk must be transferred before any compute can start.

2.4 Multi-GPU strategy

The output matrix C' is partitioned by contiguous row blocks across G GPUs, where GPU ¢ com-

putes rows [%, (Hé)M). Each GPU operates independently without inter-GPU communication,

yielding balanced workload distribution and natural NUMA alignment.
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Figure 4: Row-wise work distribution of the output matrix C across G GPUs.

3 Experimental Setup

3.1 Hardware Specifications

Table 1: Theoretical peak dense throughput (manufacturer specifications).

GPU VRAM (GB) BW (GB/s) Boost (MHz) FP32 BF16 FP64 TF32  Use Case
RTX 4080 Super 16 736 2550 52.0 1044 0.81 52.2 Consumer
RTX A6000 48 768 1800 387 1548 0.60 77.4 Workstation
NVIDIA L40S 48 864 2520 91.6 362.0 143 183.0 Data Center
NVIDIA L40 48 864 1845 90.5 181.0 N/A 90.5 Data Center

Dense theoretical peaks only (no sparsity). FP32, TF32, and BF16 assume Tensor Core execution where applicable.

Boost clocks are vendor-reported maxima; sustained clocks under load may be lower due to power and thermal

limits.

Table 2: Hardware configurations used in experiments.

Config CPU Model Sockets RAM (GB) NUMA Nodes GPUs

Server A Intel(R) Xeon(R) Gold 5318Y 2 256 2 2x NVIDIA L40S
Server B Intel(R) Xeon(R) Silver 4516Y+ 2 256 2 2x NVIDIA L40
Server C Intel(R) Xeon(R) wb-3423 1 120 1 1x RTX A6000
Desktop AMD Ryzen 7 7800X3D 1 16 1 1x RTX 4080 Super

All systems use PCIle Gend GPUs. NUMA affinity and pinned memory are explicitly controlled in all multi-socket

experiments.

We evaluate performance across three representative platforms: a multi-GPU data-center server,
a single-GPU workstation, and a consumer desktop, covering common deployment scenarios.

3.2 Software Environment

All experiments are conducted on Linux systems using NVIDIA GPUs. The software stack consists
of CUDA Toolkit 12.x with cuBLAS, and NVIDIA driver version 550.xx. Code is compiled using
gce (version 13.x) with nvce.



3.3 Experiment Setup
3.3.1 Chunked Matrix Processing

To accommodate inputs that exceed device memory, we process the input matrix X € RM*N ip
row-wise chunks. In all experiments, we choose the number of rows per chunk to equal the matrix
width, i.e., K; = N, such that each chunk has shape X; € RV*N,

For each chunk X;, we transfer X; to the GPU and compute its local contribution XZT X, €
RN*N which is then accumulated into the final result. This blockwise computation is mathemati-
cally equivalent to evaluating X ' X, up to floating-point rounding effects.

3.3.2 Numerical precision and compute mode

All reported performance results in Section 4 use BF16 Tensor Core GEMM for computation.
Input matrices are stored in FP32 in host memory and are transferred to the GPU in FP32. Before
GEMM, each chunk is converted to BF16 on the device. The product is accumulated into the
output matrix in FP32 to reduce rounding error during accumulation.

Concretely, for each chunk X; € RV*N | we execute:

T
XZ-(bﬂG) — CaStfp32_>bf16(X@'), C+C+ (Xi(bfm)) Xl-(bﬂG),

where the GEMM uses BF16 inputs with FP32 accumulation.

3.3.3 Experimental Variables

Table 3: Experiment coverage across hardware platforms and execution methods.

Hardware Chunk Sizes (N x N) Buffering Modes Multi-GPU
RTX 4080 Super SK-16K Single, Double —
RTX A6000 8K-20K Single, Double —
NVIDIA L40S (1x) 8K—-20K Single, Double -
NVIDIA L40S (2x) 16K Double Enabled
NVIDIA L40 (2x) 16K Double Enabled

Each GPU platform is evaluated across multiple chunk sizes and buffering strategies. Unless otherwise stated,

results shown correspond to representative configurations that achieve stable overlap between transfer and compute.

Chunk size corresponds to the matrix width N. For each configuration, we choose
(M, N) pairs (e.g., 8K x 2M, 12K x 1.5M, 16K x 1M, 20K x 0.9M) such that the total input size
M - N remains approximately comparable across chunk widths. Each chunk computes a partial
contribution XZTXi € RNVXN,

Scaling definitions. In strong-scaling experiments, the total problem size (M, N) is held fixed
while the number of GPUs G increases; each GPU computes approximately M/G rows of the
output. In weak-scaling experiments, the per-GPU workload is held constant by increasing the
total number of rows proportionally with G, i.e., M o« G with fixed N.

3.4 What We Test



Table 4: Experimental design organized by research question.

# Research Question Variables Fixed
1 How does chunk size af- Chunk size: 8K — 20K GPU: L40S, A6000;
fect performance? Method: Double buffer-
ing

2  What is the speedup Method: Single vs. Double ; GPU: L40S, A6000
from double buffering? Chunk size: 8K — 20K

3 How does performance GPUs: 1 — 2 (L40S), 1 — 2 Chunk size: 16K;

scale across multiple (140) Method: Double buffer-
GPUs? ing
4 How do consumer and GPU: all platforms Chunk size: 8K;
server GPUs compare? Method: Double buffer-
ing

3.5 Measurement Metrics

We report three timing metrics throughout this work:

e Kernel time: execution time of the GEMM kernel alone, measured using CUDA events.

e End-to-end wall time (H2D+Kernel): elapsed wall-clock time measured from immedi-
ately before the compute function is invoked until it returns, capturing the critical path of
host-to-device transfer and kernel execution, including any overlap.

¢ End-to-end wall time (H2D+Kernel4+D2H): elapsed wall-clock time measured from
function entry until all results are copied back to host memory.

Wall times are not computed as the sum of individual components; they reflect the measured
critical path under asynchronous execution and double buffering.

Timing methodology. While CUDA events are used to measure kernel execution time in iso-
lation, they are insufficient for accurately capturing end-to-end performance under asynchronous
execution and double buffering. In such cases, host-side wall-clock timers are used to measure
elapsed time along the critical path.

3.6 Profiling and Validation

We use NVIDIA Nsight Systems (nsys) to profile selected executions and validate overlap between
host—device transfers and kernel execution under asynchronous and double-buffered configurations.
Profiling is used for validation only; all reported performance metrics are obtained from wall-clock
timers and CUDA events as described in Section 3.5.

4 Results

4.1 Effect of Chunk Size



Table 5: Chunk-size effect on L40S without D2H. Efficiency is normalized to the sustained kernel
reference of 192.9 TFLOP /s.

Chunk Size (rows) Wall TFLOP/s Efficiency (%) Gap (%)

8,192 98.1 50.9 49.1
12,288 138.4 71.7 28.3
16,384 170.9 88.6 11.4
20,480 174.0 90.2 9.8

Table 5 shows the effect of chunk size on wall-clock throughput for the L40S GPU without
device-to-host transfers. Performance increases monotonically with chunk size, improving from
98.1 TFLOP/s at 8K rows to 174.0 TFLOP /s at 20K rows. The corresponding efficiency rises from
50.9% to 90.2%, with diminishing gains beyond 16K rows.

Table 6: Chunk-size effect on A6000 without D2H. Efficiency is normalized to the sustained kernel
reference of 116.652 TFLOP /s.

Chunk Size (rows) Wall TFLOP/s Efficiency (%) Gap (%)

8,192 101.8 87.30 12.70
12,288 108.8 93.25 6.75
16,384 111.8 95.84 4.16
20,480 112.9 96.79 3.21

Table 7: Chunk-size effect on A6000 including D2H. Efficiency is normalized to the common no-
D2H sustained reference of 116.652 TFLOP /s.

Chunk Size (rows) Wall TFLOP/s Efficiency (%) Gap (%)

8,192 101.6 87.13 12.87
12,288 107.4 92.08 7.92
16,384 110.0 94.31 5.69
20,480 111.6 95.63 4.37

Tables 6 and 7 report the same experiment on the A6000 GPU without and with device-to-
host transfers, respectively. In both cases, performance improves steadily with larger chunk sizes,
reaching over 95% efficiency at 20K rows. Including device-to-host transfers results in only a minor
reduction in throughput, indicating that chunk size effects remain consistent under end-to-end
execution.
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Figure 5: Measured host-to-device transfer time and compute time (cast + GEMM) as a function
of chunk size on the L40S GPU.

The measured effective host-to-device bandwidth is approximately 25.2 GB/s, explaining the
transfer-dominated regime observed at smaller chunk sizes.

4.2 Impact of double buffering

Table 8: Impact of double buffering on L40S end-to-end throughput without D2H.
Chunk Size (rows) SB TFLOP/s DB TFLOP/s Speedup Gain (%)

8,192 68.2 98.1 1.44% 43.8
12,288 73.8 138.4 1.88x 87.5
16,384 105.6 170.9 1.62x 61.8
20,480 108.0 174.0 1.61x 61.1

Table 9: Impact of double buffering on A6000 end-to-end throughput without D2H.
Chunk Size (rows) SB TFLOP/s DB TFLOP/s Speedup Gain (%)

8,192 55.8 101.8 1.82x 82.4
12,288 68.3 108.8 1.59% 59.3
16,384 75.0 111.8 1.49x% 49.1
20,480 79.9 112.9 1.41x 41.3




Table 10: Impact of double buffering on A6000 end-to-end throughput including D2H.
Chunk Size (rows) SB TFLOP/s DB TFLOP/s Speedup Gain (%)

8,192 55.6 101.6 1.83x 82.7
12,288 68.0 107.4 1.58 % 597.9
16,384 74.5 110.0 1.48% 47.7
20,480 79.3 111.6 1.41x 40.7

Tables 8-10 report the impact of double buffering on end-to-end throughput across different
chunk sizes. Double buffering improves wall-clock performance for all configurations, yielding
speedups between 1.4x and 1.9%x depending on chunk size and GPU.

The relative speedup is largest at smaller chunk sizes, where single buffering suffers from lower
utilization. However, absolute throughput under both buffering strategies increases with chunk size
and saturates at larger chunks.

4.3 Multi-GPU Scaling

Table 11: Strong scaling across identical 1.40S GPUs under a fixed total workload. Speedup Sy
and parallel efficiency En are computed from wall-clock time.

GPUs Wall TFLOP/s Speedup Sy Efficiency Exy  Slowest-GPU kernel TFLOP /s

1 177.3 1.00 1.00 202.7
2 348.7 1.97 0.983 201.5

Table 12: Weak scaling across identical L40 GPUs with proportional workload per GPU. Speedup
Sy and parallel efficiency En are computed from wall-clock time. Kernel throughput reports the
slowest GPU.

GPUs Wall TFLOP/s Speedup Sy Efficiency Exy  Slowest-GPU kernel TFLOP /s

1 89.4 1.00 1.00 93.3
2 176.0 1.97 0.984 93.1

Slowest-GPU kernel TFLOP/s is computed as slowest GPUs after taking the median over
repeated runs.

4.4 Consumer vs. Server GPU Comparison

This section compares consumer- and server-class GPUs under the same matrix multiplication
methodology. Server-class GPUs (L.40S and A6000) consistently achieve higher and more stable end-
to-end throughput and higher effective performance per watt under sustained workloads, reflecting
their power delivery, cooling, and clock stability characteristics.

A consumer GPU reference (RTX 4080 Super) is additionally reported for context. On a
smaller dense workload constrained by host memory, the RTX 4080 Super achieved approximately



108 TFLOP/s in BF16 and 54 TFLOP /s in TF32 when measured at the kernel level. These values
slightly exceed nominal published dense Tensor-core specification figures, which is attributed to
sustained boost clock behavior under favorable thermal conditions. Because this result was obtained
on a reduced problem size and is not directly comparable to server GPU measurements, it is reported
for qualitative context only and is not used for quantitative comparison.

5 Discussion

This section discusses the observed performance trends reported in Section 4 and provides qualita-
tive explanations ...

5.1 Chunk size and overlap behavior

The chunk-size experiments show a transition from a transfer-bound to a compute-bound regime
as chunk size increases. For small chunks, host-to-device transfer dominates execution time and
limits throughput. As chunk size grows, computation increasingly overlaps with data transfer under
double buffering, enabling higher sustained performance.

Beyond this transition, increasing chunk size yields diminishing returns. Although larger chunks
increase arithmetic intensity, they also increase memory traffic and kernel execution time without
proportional gains in effective FLOP throughput. While slightly higher peak performance is oc-
casionally observed at larger chunk sizes (e.g., 20K rows), these gains are not consistently repro-
ducible. In practice, a chunk size of approximately 16K rows provides a stable sweet spot, achieving
near-peak performance while avoiding sensitivity to system-level variability.

Kernel throughput and sustained performance. Kernel-only measurements show that smaller
chunk sizes can achieve higher instantaneous FLOP rates than larger chunks. This behavior does
not arise from reduced utilization at large chunk sizes. Instead, larger chunks drive sustained SM
and Tensor Core utilization and push the GPU toward its power and thermal limits. Under these
conditions, power and thermal constraints limit the achievable operating frequency, resulting in
slightly lower kernel-only FLOP rates despite higher utilization.

In contrast, smaller chunk sizes operate under less restrictive power conditions, allowing higher
instantaneous operating frequencies and higher kernel-only FLOP rates. These measurements re-
flect transient boost behavior rather than sustained compute performance. For this reason, the
single-buffered kernel throughput measured at the largest chunk size (20K rows) is used as a con-
servative reference for sustained performance, aligning with the regime that maximizes end-to-end
throughput under double buffering.

5.2 Effectiveness of double buffering

Double buffering consistently improves wall-clock throughput across all tested configurations by
overlapping host-to-device transfers with kernel execution. The relative benefit of double buffering
is largest at smaller chunk sizes, where single-buffered execution suffers from transfer-induced idle
periods. As chunk size increases and execution becomes compute-dominated, the incremental ben-
efit of overlap diminishes, leading to reduced relative speedup while maintaining higher absolute
throughput.



5.3 Multi-GPU Scaling Behavior

Strong-scaling experiments across identical L.40S GPUs demonstrate that partitioning a fixed work-
load across multiple devices significantly reduces wall-clock execution time, yielding near-linear
speedup. For the evaluated configuration, scaling from one to two GPUs achieves a 1.97x speedup
with approximately 98% parallel efficiency. The measured runtime exceeds the ideal T} /2 baseline
by only a small margin, indicating modest system-level overhead arising from host-side orchestra-
tion, synchronization, and transfer contention.

Per-GPU kernel throughput remains comparable between the single- and multi-GPU cases,
confirming that the observed scaling behavior is primarily driven by reduced wall-clock execution
time rather than changes in kernel efficiency. While slight run-to-run variability is observed, no
systematic degradation in per-GPU compute performance occurs when increasing the number of
GPUs.

Weak-scaling experiments on L40 GPUs further show that proportional increases in workload
and GPU count lead to near-linear growth in aggregate throughput, with wall-clock time remaining
approximately constant. Minor deviations from ideal weak scaling are attributed to fixed host-side
overheads and transfer costs that do not scale with problem size. Overall, these results indicate
that both L40S and L40 platforms exhibit robust multi-GPU scaling behavior, with performance
primarily limited by system-level effects rather than device-side compute efficiency.

5.4 Consumer versus server GPU characteristics

The comparison between consumer- and server-class GPUs highlights qualitative differences in per-
formance stability and scaling behavior. Server GPUs maintain more consistent sustained through-
put under large, memory-intensive workloads, benefiting from higher memory bandwidth, robust
power delivery, and thermal stability. In contrast, consumer GPUs may achieve high peak ker-
nel throughput under favorable conditions, particularly on smaller workloads, but exhibit greater
sensitivity to problem size and execution environment.

6 Conclusion

This work presents a systematic performance study of large-scale X " X computation on modern
GPUs using chunked processing and overlapped data transfer. By partitioning the input into
square chunks and accumulating partial results, the proposed approach enables efficient execution
for problem sizes that exceed device memory while preserving mathematical equivalence to a single-
pass computation.

Our results demonstrate that chunk size plays a critical role in end-to-end performance. In-
creasing chunk width transitions execution from a transfer-bound regime to a compute-dominated
regime, after which performance gains diminish. Double buffering is shown to be effective in hid-
ing data transfer latency, particularly at smaller chunk sizes, and consistently improves wall-clock
throughput.

Strong-scaling experiments across multiple GPUs indicate near-linear speedup for fixed work-
loads, with observed efficiency close to ideal. Finally, a qualitative comparison between consumer-
and server-class GPUs highlights that server GPUs deliver more stable sustained performance under
large, memory-intensive workloads, while consumer GPUs may achieve high peak kernel throughput
under favorable conditions.

Overall, these findings provide practical guidance for selecting chunk sizes, buffering strategies,
and hardware platforms when implementing large-scale matrix multiplication on GPU systems.
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Code Availability

The implementation used for all experiments is available at: https://github.com/duongtrongnguyen123/
gpu-out-of-core-xtx.

References

Numerical Accuracy Validation

We validate numerical accuracy for the computation C = X' X, where X € RM*N with ii.d.
N(0,1) entries, using a representative large-scale configuration with M = 222, All inputs are
stored in FP32. An FP64 reference is obtained using FP64 compute with FP64 accumulation. All
other configurations use FP32 inputs, perform computation in the specified precision (FP32, TF32,
BF16, or FP16), and accumulate results in FP32.

Table 13: Numerical accuracy of X ' X relative to FP64 reference. All inputs are FP32. FP64
uses FP64 compute and accumulation; other modes use the specified compute precision with FP32
accumulation.

Compute dtype Relative Frobenius error Smallest eig. rel. (%) Largest eig. rel. (%)

FP32 4.5 x 1077 3.6 x 107 2.9 x 107°
TF32 9.4 x 107° 9.96 x 1073 8.73 x 1073
BF16 1.17 x 1074 5.81 x 1073 4.92 x 1073
FP16 8.38 x 107° 8.94 x 1073 7.70 x 1073

Table 13 reports numerical accuracy relative to the FP64 reference. FP32 exhibits near-exact
agreement with FP64, while reduced-precision compute modes (TF32, BF16, FP16) introduce
relative Frobenius errors on the order of 1074,

Elementwise accuracy. Elementwise error metrics relative to the FP64 reference are reported
using the relative Frobenius norm, RMSE, and mean absolute error. FP32 exhibits near-exact
agreement with FP64, while reduced-precision compute modes (TF32, BF16, FP16) introduce
relative Frobenius errors on the order of 107%. Maximum relative errors are dominated by near-
zero off-diagonal entries and are therefore not representative of global numerical accuracy.

Distributional sanity check. For X;; ~ N(0,1), diagonal entries satisfy E[Cy;] = M, while
off-diagonal entries satisfy E[C;;] = 0 with standard deviation VM. Observed diagonal and off-
diagonal statistics closely match these theoretical expectations, confirming correct accumulation
across all rows and chunks and providing a strong sanity check at scale.

Spectral validation. The smallest and largest eigenvalues of C' are compared against the FP64
reference. Across all reduced-precision compute modes, relative deviations remain below 0.01%,
indicating that the global spectral structure of X ' X is well preserved despite reduced-precision
compute with FP32 accumulation.
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